

TEMPORAL CONTROL OVER SOUND SYNTHESIS
PROCESSES

Jean Bresson Carlos Agon

Ircam – Music Representations Team
Paris, France

ABSTRACT

This article addresses the problem of the representation
of time in computer-assisted sound composition. We try
to point out the specific temporal characteristics of
sound synthesis processes, in order to propose solutions
for a compositional approach using symbolic models and
representations.

1. INTRODUCTION

The use of computers for music composition allows the
formalisation and experimentations on compositional
processes using symbolic computing models. Programs
thus become a part of the music representation. Visual
programming interfaces such as OpenMusic [1] were
developed in order to make the creation of these
programs easier, and more accessible for musician users.

Concurrently, digital sound synthesis is another
important revolution introduced in music by the use of
computers; but the lack of abstraction and symbolical
representations in sound synthesis applications remains
an obstacle for the creation of rich compositional
models.

In this article, we will concentrate on the temporal
aspect of sound synthesis programming and address this
problem from the Computer-Assisted Composition
(CAC) standpoint. Indeed, we think that Computer-
Assisted Composition might propose some solutions in
order to conciliate sound synthesis and music writing.

We present works carried out in OpenMusic,
especially with the maquette interface, which model has
been reformulated. This model integrates visual
programming and temporal control in a coherent and
generic way, which, we hope, allows to develop sound
synthesis processes in a compositional context.

Section 2 will outline some reflections about time in
relation to sound synthesis, and section 3 will cite some
related works. In sections 4 and 5, we present the visual
programming framework developed in OpenMusic with
the maquette features and concepts. Finally, section 6
will give some examples of this system in sound
synthesis applications.

2. TIME AND SOUND SYNTHESIS

2.1. Temporal Scales

The control of sound synthesis for music composition
involves the temporal parameter at different levels. The
first is the organization of sound objects in a temporal
axis. This aspect of the temporal control is not specific
to sound synthesis and can be brought together with the
temporal formalisms used for music composition in
general (see [6], [18], [14]). These different formalisms
of time representation include absolute models,
relative/hierarchical models, functional models, logical
models, constraints-based models, etc.

On the other hand, since the earlier works on sound
synthesis, time has been identified as an important
parameter of timbre. In 1957, while developing a
modern musical thought which now integrates timbre as
a full-fledged and promising compositional field, K.
Stockhausen yet defined timbre as "the result of a
temporal structure" [26]. Later, notably with the works
of M. Mathews and J.-C. Risset on synthetic timbres
[22] [19], temporal phenomena such as attack transients,
or relations between spectral parameters' temporal
evolutions were pointed out as fundamental descriptors
in the perception of the musical sound timbres. Since
then, time was intensively used inside sound synthesis
programs, and the control of the independent or related
evolutions of synthesis parameters became a
compositional challenge [23].

This structuring aspect of time in sounds carried our
attention on some specific temporal properties. Synthesis
processes deal with time at the microscopic level of the
sound samples. Indeed, a synthesis program generates
the values of a digital waveform that represents a
continuous acoustic vibration. The sampling rate of this
acoustic phenomenon must be as high as possible in
order to reach high audio quality, i.e. to simulate the
continuity of the acoustic waveforms. Supposing that
continuity can be assumed from the point where
perception does not distinguish discrete elements
anymore, the temporal problem for the control of sound
synthesis can thus be expressed in terms of continuity vs.
discrete paradigms (see also [13]). If we want to keep
cautious with these epistemological concepts, we can
correlate the discrete paradigm with the domain where
the objects (events) manipulated for creating compound

structures keep having an appreciable significance, while
in the domain of continuity, the objects of composition
will not be delimited and independently discernable
anymore.

2.2. Synthesizers

The different time paradigms can be identified in
software synthesizers. "Event-based" synthesizers (e.g.
Csound [8]) are "naturally" polyphonic, and respond to
punctual events and commands. They provide a logical
organization and communication between several
synthesis modules.

On the other hand, "continuous" synthesizers (e.g.
CHANT [25]) are based on "phrases" and produce a
sound result by computing the system state at each
moment. In this case, elaborated transitions (e.g.
interpolations) and continuous manipulations are easier
to control.

Evidently this distinction is actually not so
restrictive: continuous phenomena can be controlled in
the first case, and the second one can also be
manipulated in an "event-based" fashion. We will only
retain that some software architectures can be more or
less adapted and oriented towards one or another
particular temporal paradigm [16].

2.3. The Compositional Problem

The nested temporal scales involved in an electronic
composition will generally concern simultaneously both
temporal domains described above. Structural relations
still exist between them, but their inherent characteristics
do not necessarily imply the same internal rules.

Events represent the primitive of a discrete
conception of sounds. They are elements that can be
manipulated at a symbolical level. Nonetheless,
continuous phenomena allow to generate complex sonic
morphologies, and thus also need to be considered in the
control structures. These phenomena can be internal to
discrete events (e.g. the expression of an internal
movement or transformation), or external (e.g.
transitions from an event to another).

The notion of event thus becomes blurred. J. F. Allen
in [3] defines an event as "the way by which agents
classify certain patterns of change". Depending on the
desired compositional abstraction, an event can be the
beginning of a sound in a large-scale musical structure;
it can be a note (an acoustic element with a perceptible
pitch and duration), a variation of energy in a spectral
region, the beginning of a continuous transition.

Therefore, the compositional control of sound
synthesis cannot be restricted in the positioning in time
of synthesis events. From the same compositional point
of view, however, it must stay at a symbolic level. The
problem is thus to establish relations between the linear
continuity of time with a symbolic representation that
allows its structuration and modelling. In other words,
we would need symbolic data able to represent and
control continuous temporal objects.

3. RELATED WORKS

Various CAC systems are oriented towards sound
synthesis. We propose here a brief overview of a (non-
exhaustive) selection of some of them, which present
original conceptions of time. More environments exist,
that propose different interesting solutions (e.g. [12],
[15]). The relevant temporal aspects of the following
examples are outlined in order to provide comparison
criteria for positioning our works in OpenMusic.

Formes [24] was part of the earliest generations of
CAC environments developed at Ircam. Originally
designed to be a control interface for the CHANT
synthesizer, this textual object-oriented language based
on Lisp was one of the first systems integrating
composition and sound synthesis. Formes proposed a
hierarchical processes scheduling system, managed by a
general "monitor", and which provided a high-level and
continuous control of sound synthesis in time, allowing
to program complex temporal situations.

Boxes [7] is a visual environment which proposes a
hierarchical temporal organization of musical objects.
These object (graphical boxes) contain spectral
representations of sounds and are connected to an
additive synthesizer. In this framework, temporal
constraints can be set between the boxes, which provides
a logical time organisation model. However, this
temporal control does not get in the internal synthesis
processes but rather organize the synthesized objects in
time.

In the real-time system PureData [20], the data
structure allows to schedule real time processes in a
temporal axis, thanks to a graphical interface and
process delaying operations [20]. The control is linear
and under restraint of the real-time constraints [28],
however the visual representation of time in such a
system allows to envisage large scale (possibly
hierarchical) organisations of real-time synthesis
processes, and to step up to a real-time based score.

Iannix [11] is another real-time system, in which
time is approached in an original way. The visual
interface is a bi-dimensional temporal space on which
the user creates temporal trajectories, which can be lines,
curves, circles. Cursors then follow these trajectories
with variable speeds and directions, and activate
synthesis events when they meet some trigger objects.
This environment thus allows to organize parallel
temporalities in a same space. The OpenGL 3D interface
allows to zoom in and out in this space and to simulate a
continuous hierarchy for variable-scales composition
processes.

4. TEMPORAL ASPECTS IN OPENMUSIC

4.1. About Visual Programs

OpenMusic is a Computer-Assisted Composition
environment, which merges visual programs and musical
notation [4]. In OpenMusic, a patch is a representation

of a program. The user writes this program using
graphical boxes and connections, and creating a
functional expression. Boxes represent functional calls,
and connections represent the functional composition of
the program. Figure 1 shows an example of patches in
OpenMusic. Some special boxes are used in patches to
represent musical data structures such as chords
sequences or sounds.

The patch maintains a correspondence with a Lisp
function: once a patch has been defined, it can thus be
used as a function in another patch. This functional call
is then also represented by a box, which evaluation
consists in applying the function to the values connected
to its inputs. Figure 1 illustrates this with a sound
synthesis patch and its application in another patch. In
this example, the patch requires a sequence of chords
and an amplitude envelope as arguments, and returns a
synthesized sound (see [10] for sound synthesis
possibilities in OpenMusic).

Figure 1. A sound synthesis patch (synthesis-patch)
and its application in another patch (patch2).

Multiple occurrences of a patch, represented by boxes in
other patches, are thus all references to the same original
patch, which function definition remains unaffected.
This property presents advantages in terms of function
prototyping, and use of abstractions (similarly to the
definition of functions in a traditional programming
language which allows modifying a function once and
affecting all the places where it is used). Abstraction is
thus used to reach a high level of control in musical
processes.

In contrast with real time systems, the time
representation in an OpenMusic patch is that of the
calculus: objects are computed following the structure of
the functional graph. Musical time is thus represented
and controlled as a numerical parameter in the program.
Following the distinction made by I. Xenakis in [31],
these objects resemble "out-of-time" structures, i.e.
structures that have their own internal composition rules.
They will be unfolded "in-time" in a later phase, when
integrated in a temporal context (e.g. when they are
played).

4.2. Temporal Context: Maquettes

A maquette is a programming interface with 2
dimensions: the horizontal axis represents time, and the
vertical axis is a freely interpreted parameter (called y).
This bi-dimensional space imposes a temporal context to
the objects inside: it represents a way for unfolding
musical objects in time.

Foremost, the maquette is a program that allows to
define the temporal organization of other programs.
These programs are represented in the maquette by
rectangles called temporal-boxes, whose horizontal
position is correlated with an offset, and the extent with
a duration (see Figure 2). These temporal-boxes can be
connected together, recreating in this way the functional
connections between the corresponding programs. A
temporal-box can thus refer to a patch, or to another
maquette (the latter allows to constitute hierarchical
temporal structures). It can also refer to a simple object,
which is equivalent to the particular case of a patch
representing a constant function.

Figure 2. A maquette window with temporal boxes and
functional relations.

In Figure 2, the bottom-left temporal-box refers to a
patch similar to the one of Figure 1, which generates a
sound. Actually, double-clicking this temporal-box
opens the patch editor of Figure 4. The specific
properties of such a patch will be discussed in section
4.3.

In addition, the maquette can be contained in a patch,
and constructed algorithmically. In this case, the musical
objects and their temporal offsets are given as input
parameters of the maquette box (see Figure 3).

Figure 3. A maquette constructed in a patch.

Interested readers can find more descriptions about the
maquette implementation in [1], [5]. In [10], we were
considering using this interface as a support for
developing sound synthesis models. We propose here a
renewed version of the maquette, improved for hosting
such processes integrating time and sound synthesis (see
section 5 and 6).

4.3. Evaluation vs. Performance

The maquette integrates "out-of-time" patches in a
temporal context in order to build a musical
development with them. However this is not the matter
of scheduling processes, but rather to incorporate the
time parameter in the process. In the maquette model,
evaluation and performance are two separated concepts.

During the computation of the maquette, we call
evaluation the phase where functional calls are evoked,
and the values of the temporal-boxes (the musical results
of each individual patch or maquette) are calculated.
This phase is the preliminary of another one, related to
the performance, where these results are collected in
order to build a global musical object.

This separation allows create temporal situations
without being dependant on the linear time flow (in
Figure 2, the sound box depends on data coming from an
object that occurs later in the performance time.) It also
reflects the distinction between composition and
performance times.

In the evaluation phase, the "terminal" temporal-
boxes in the functional graph of the maquette are
evaluated, which evaluates recursively all the temporal-
boxes following the functional order defined by this
graph.

In the performance phase, the maquette computes its
own musical result by collecting and mixing all the
objects resulting from the temporal-boxes, now
following the linear temporal order defined by the
positions of the temporal-boxes.

A container object is created, called maquette-object.
It will eventually be sent to MIDI or audio renderers if
the maquette is played, or represent the maquette itself in
the performance phase when it is included in another
maquette.

4.4. Programs in Time

Once it is introduced in a maquette, a patch is thus
associated to a temporal-box and has two new
characteristics due to its relation to the temporal context
(see Figure 4):

- It can access the coordinates and properties
(position, offset, size, colour, etc.) of the temporal-box
that invokes the process thanks to a "temporal input". In
Figure 4, the vertical position (y) of the temporal-box in
the maquette is used as a multiplying factor for the
amplitude envelope.

- It must provide a special "temporal output", which
ports the external representation of the program: the
object which is collected in the performance phase

defined above. In our example (Figure 4), the TempOut
box ports a synthesized sound (represented on the
bottom-left box in the maquette of Figure 2).

This object computation can thus depend on the self
properties of the temporal-box, and on other external
data: the temporal program still can have other inputs
and outputs allowing it to receive and transfer data to the
other objects.

These relations of the musical objects with their
external context might illustrate a sentence from P.
Boulez, formulated in [9] while talking about the two
compositional stages that are composing "within objects,
in order to build them, or from the outside, in order to
organize them", and which specified that "external
criteria can act on internal criteria and modify the
objects in order to link them in a coherent development
and place them in a formal context".

Figure 4. A "temporal patch". This patch corresponds
to the bottom-left box of the maquette of Figure 2 and
uses the patch of Figure 1.

These temporal characteristics of the patches are
optional: a patch that has no temporal output will
nonetheless be able to act as a programming element in
the evaluation phase of the maquette, without
participating to the performance phase.

Including patches in the maquettes enables the use of
abstractions and the program reusability. The temporal-
boxes can thus constitute "template" objects, that can be
duplicated and compute different results depending on
their positions and self properties, but still controlled by
a unique template program.

5. SYNTHESIS MAQUETTE

In order to obtain an improved temporal control, and to
tackle the issues discussed in section 2, we complete the
model of the maquette with two specific characteristics,
(corresponding to the two phases – evaluation and
performance – presented in section 4.3.)

5.1. The Maquette as a Program

Even though we pretend that the maquette is the
representation of a program, its temporal specificity
implies a particular behaviour. Indeed, the maquette
program is based on the temporal properties of the
temporal-boxes. However, these properties are
susceptible to change: they can be modified by the
execution of the program itself (see section 4.4.) For
example, a temporal box can have its position (offset)
changed depending on a variable parameter. Following
the functional analogy, the evaluation of the maquette
could therefore constitute a redefinition of the
underlying program, which can be problematic when
using functional abstractions. The correspondence
between the maquette and an abstract Lisp function thus
cannot be maintained.

Nonetheless, we introduced the possibility to assign
inputs and outputs to the maquettes, so that they can
nevertheless be regarded as programs and be abstracted
at a functional level.

The external evaluation of a maquette then consists
in computing its inputs, the maquette-object, and
evaluating the different outputs. Externally, the maquette
is then like any other patch whose special temporal
output would create the maquette-object.

The temporal hierarchy created by embedding
maquettes one in another can then be generalized at this
functional level.

In Figure 5, the maquette has 3 inputs and 1 output:
the input values are passed to the internal temporal-
boxes (one of them refers to another maquette), and the
output of one of these temporal-boxes is returned by the
output of the maquette.

Figure 5. Temporal / functional hierarchies in a
maquette.

In a patch, a maquette can then also be regarded as the
functional call of the program defined by this maquette
(see Figure 6), in contrast with the previous constructive
representation (Figure 3). In Figure 6, the inputs of the
maquette box correspond to the inputs in the maquette
editor of Figure 5. The 2 outputs of the box represent the
maquette-object and the output of the maquette editor.

Figure 6. The maquette of Figure 5 in a patch.

However, this functional representation of the maquette
still presents a slight limitation. The computation result
depends on, and can modify the properties of the internal
objects. For that reason, recursion is not allowed; some
consistency checking must therefore ensure that the
functional abstraction of a maquette is not called inside
the self maquette or one of its parents.

5.2. Maquette-Object Computation

Until now, the creation of the maquette-object in what
we called the performance phase of the maquette
computation was made by mixing the temporal outputs
of the patches referred by the temporal-boxes. Such a
maquette does not have a real computational control
over its own result, as the patches do thanks to their
"temporal output" (see section 4.4.)

The new model we propose considers the maquette-
object computation as an accessible part of the program,
that consists in processing the temporal-boxes and
building a musical result depending on their values,
positions, properties and relationships.

In sound synthesis applications, the patches and
objects in the maquette do not necessarily compute
musical objects (sounds) anymore, but can also generate
control parameters. The evaluation of the maquette
would then consist in a synthesis program, that
manipulates all these individual objects, and use them
for controlling a high-level sound synthesis process.

In this way, the composer has a hand on the process
that creates the musical result of the maquette (the
former maquette-object) using the temporal-boxes
contained in it. The problem of the transition from
discrete control elements (represented by the temporal-
boxes) to continuous phenomena can be handled in this
framework.

The synthesis-function is a new attribute of the
maquette. Such function can be a patch or a lisp
function, providing this patch or function has one input
or argument (representing the list of temporal-boxes)
and one output (the computed resultant object). It is
supposed to constitute a link between these temporal-
boxes and the musical result of the maquette.

This synthesis-function can be assigned to a
maquette algorithmically in a patch, or by dragging a
patch or function box in a special zone of the maquette
window (the bottom-left corner of the window). It is

supposed to control the computation of the musical
result of the maquette. When no synthesis function is
assigned, however, the default maquette-object is
computed.

Figure 7 shows a schematic example of the use of a
maquette and its synthesis-function. Next section will
illustrate with more details some possible cases of use.

Figure 7. A maquette and its synthesis function. An
icon in the bottom-left corner represents the synthesis
function. Double-clicking this icon opens the synthesis
patch.

The possibility to set a "classical" patch as synthesis-
function also allows the use of templates of synthesis
processes that can be applied in different contexts.

6. APPLICATIONS FOR SOUND SYNTHESIS

6.1. Templates for Synthesis Events

This first application is an example of control of a
Csound program using a maquette. It was inspired by
previous works by K. Haddad using the OM2CSound
library [17].

Figure 8. A maquette used for Csound synthesis. In
this maquette each temporal box (event) represents a
part of the score.

The maquette of Figure 8 is used as a graphical interface
for designing the Csound score. Various template
patches are used. Each one of them, identified by a
particular colour, produces a different kind of data,
related to a Csound score event.

The data produced by the temporal-boxes thus does
not correspond to "perceptible" objects: they need to be

integrated all together in order to create a musical result
(a sound).

The synthesis-function of this maquette, represented
in Figure 9, is a function that converts these values of the
temporal-boxes into a Csound score, associates this
score to a Csound orchestra, and then runs Csound for
computing a sound.

Figure 9. A Csound synthesis patch associated with the
maquette of Figure 8.

The visual and interactive control of the synthesis events
is thus associated to a global control of the events
processing.

If this maquette is used in a higher-level structure, it
will (once evaluated) be considered (externally) as the
computed sound. Figure 10 shows an example of this
maquette used in another maquette next to other sounds.
It can also be used in a patch as a sound synthesis
function and interface (see Figure 11).

Figure 10. The maquette of Figure 8 in a higher-level
maquette. The external representation is the sound.

Figure 11. The same maquette (Figure 8) in a patch, as
a synthesis function.

6.2. Global Synthesis Performance

In [10], we attempted a first adaptation of the piece
Traiettoria… deviatta from M. Stroppa [27] into a
maquette (see Figure 12.)

Figure 12. Part of the reconstitution of Traiettoria...
deviatta in a maquette (extracted from [10]).

In this maquette, the hierarchical feature was used to
reach a visual control over the temporal structure of the
piece. Each terminal box was a synthesis patch using the
OMChroma system [2], and producing a sound. At the
time of evaluating the maquette, a multiplicity of
synthesis programs were performed sequentially, and the
resulting sound was mixed down.

With the synthesis-function, the sound synthesis
process is delegated to a higher level: instead of
processing separated programs in the maquette, each
temporal box returns a matrix of parameters. These
synthesis parameters are then collected by the synthesis-
function, which triggers the Chroma synthesis program
[29].

When using large numbers of such synthesis events,
this processing method demonstrates much more
efficiency.

Figure 13 shows the new maquette, which uses the
synthesis function. The objects represented and
manipulated are the control parameters of the sound
synthesis; they are closer to the symbolic data involved
at a compositional level. The sound object is computed
in the late synthesis level, instead of the former
maquette-object, which collected the sounds coming
from synthesis patches.

Figure 13. Reconstitution of Traiettoria... deviatta in a
maquette (2nd version).

This procedure (which consists in computing the
synthesis parameters in the evalution phase and running
the sound synthesis in the latter performance-related
phase) also allows to consider abstract relations between
the boxes in time, not expressed as such in the maquette,
but built at the time to compute the final sound. This will
be illustrated in the following example.

6.3. Creation of Continuous Events

The control of sound synthesis in the maquette allows to
systematize the processing of synthesis events in order to
create continuous phenomena based on these events.
This can be done especially at a global level, i.e. not
inside (or between) each individual event. Starting from
essential control objects, complex sound descriptions
can be computed using continuation or transition
processes.

This last example is an application of the maquette
for controlling the CHANT synthesizer. This synthesizer
is based on continuous phrases described by the states of
synthesis modules at different moments.

We will use a CHANT configuration that consists in
a single FOF synthesis ("Fonction d'Onde Formatique" –
or Formant Wave Function). For setting the synthesizer's
parameters, the user must provide the state of a FOF
bank (FOB) at different times. This is done by mean of
an SDIF file [30] in which each frame contains the FOB
state at time t. The main parameters to set are the
frequency, bandwidth, and amplitude of each FOF. In
order to simplify our example, we will consider the
frequency parameter only. The maquette of figure 14
contains 3 temporal boxes, each one of them containing
a break-point function (BPF) that represents the
frequencies of 8 FOF at corresponding times.

Figure 14. A simple maquette containing 3 control
BPF.

In a first version, our synthesis-function will process
these values in order to complete the FOF bank data and
write its evolution in an SDIF file. The corresponding
patch is illustrated in Figure 15.

Figure 15. The CHANT synthesis patch for the
maquette of Figure 14.

Figure 16 shows the loop editor for the process-
tempboxes box of Figure 15.

Figure 16. The "process-tempboxes" loop of Figure
15.

If we use this patch as the synthesis-function of our
maquette, 3 FOB frames are created and used to process
the CHANT synthesis.

In a second version of the synthesis-function, we
replace the process-tempboxes loop by another one
(represented in Figure 17), that assigns a programmed
continuation to the initial FOF elements. Each one of the
FOB created will be completed with a period of
perturbations (during the extension of the temporal box).
Additional SDIF frames are generated, which makes the
final FOB evolution more complex (with our 3 boxes
and a control rate of 0.1s., some 100 frames are created
dynamically.)

Figure 17. A second version of the "process-
tempoxes" loop in the synthesis-function of Figure 15.
Additional data are created after each event in order to
generate variations.

The Figure 18 shows a comparison of the frequency
evolution in the SDIF files generated in the two versions
of this example.

Figure 18. Evolution of the FOF frequencies in the
SDIF files generated in the two different examples.

This process thus permitted to construct a complex
evolution of the FOF in time (see Figure 18) without
having to consider this complexity at the time of setting
the initial temporal boxes.

These boxes and their values are the external, visible
part of the process, while the synthesis patch is the
computing level of this process that integrates the
external level and transforms it into a sound.

Both parts have to be defined separately: the
maquette constitutes a symbolic interface level chosen
by the composer for the control of the entire process.

7. CONCLUSION

While musical editors are insufficient to represent the
processing parameters and relations involved by sound
synthesis, and programming interfaces cannot integrate a
musical and intuitive representation of time, the use of
the maquette might be a worthy trade-off for the control
of synthesis processes integrating temporal and symbolic
aspects.

By mixing a programming environment and a visual
control with an arrangement of the musical materials in
time, it provides a variable-scaled vision of musical
structures. Microscopic time (the time of the sound
samples and continuous evolutions), can be handled with
macroscopic time (the time of the musical forms), and
sometimes be related to it: the internal composition rules
of out-of-time objects interact with the high-level
temporal organization.

The maquette thus allows to unfold sound synthesis
processes in time, but also to integrate time in the
synthesis processes. We have seen in the different
examples that the synthesis process in the maquette
allowed the representation of continuous objects using
the discrete representation of both events (in the
maquette) and program (in the synthesis-function).

We believe that this system could help composers to
get the advantage of the means provided by the CAC
environment in order to get to new applications of sound
writing and creation.

8. REFERENCES

[1] Agon, C. OpenMusic: Un Langage Visuel pour
la Composition Assistée par Ordinateur, PhD.
Thesis, Université Paris VI, 1998.

[2] Agon, C., Stroppa, M. and Assayag, G. "High
Level Musical Control of Sound Synthesis in
OpenMusic", Proceedings of the International
Computer Music Conference, Berlin, Germany,
2000.

[3] Allen, J. F. and Ferguson, G. "Actions and
Events in Interval Temporal Logic", Journal of
Logic and Computation, 4, 5, 1994.

[4] Assayag, G., Agon, C., Fineberg, J. and
Hanappe, P. "An Object Oriented Visual
Environment for Musical Composition",
Proceedings of the International Computer
Music Conference, Thessaloniki, Greece, 1997.

[5] Assayag, G., Agon, C., Fineberg, J. and
Hanappe, P. "Problèmes de notation dans la
composition assistée par ordinateur", Actes des
rencontres pluridisciplinaires Musique et
Notation, Lyon (GRAME), France, 1997.

[6] Balaban, M. and Murray, N. "Interleaving Time
and Structures", Computer and Artificial
Intelligence, 17(4), 1998.

[7] Beurivé, A. and Desainte-Catherine, M.
"Representing Musical Hierarchies with
Constraints", Musical Constraints Workshop
(CP'2001), Paphos, Cyprus, 2001.

[8] Boulanger, R. (Ed.) The Csound Book, MIT
Press, 2000.

[9] Boulez, P. "Timbre and composition – timbre
and language.", Contemporary Music Review,
vol. 2, part. 1, 1987.

[10] Bresson, J., Stroppa, M. and Agon, C. "Symbolic
control of Sound Synthesis in Computer Assisted
Composition", Proceedings of the International
Computer Music Conference, Barcelona, Spain,
2005.

[11] Coduys, T. and Ferry, G. "Iannix.
Aesthetical/symbolic visualisations for
hypermedia composition", Proceedings of the
Sound and Music Computing Conference, Paris,
France, 2004.

[12] Dannenberg, R. B., McAvinney, P. and Rubine,
D. "Arctic: A Functional Approach to Real-Time
Control", Computer Music Journal, vol. 10, n°4,
Winter 1986.

[13] Dannenberg, R. B., Desain, P. and Honing, H.
"Programming Language Design for Music", in
C. Roads et al. (Eds.) Musical Signal Processing,
Swets and Zeitlinger, 1997.

[14] Desainte-Catherine, M. and Beurivé, A. "Time
Modeling for Musical Composition",
Proceedings of the 1st International Conference
on Fuzzy Systems and Knowledge Discovery –
FSKD'02, Singapore, 2002.

[15] Eckel, G. and Gonzalez-Arroyo, R. "Musically
Salient Control Abstractions for Sound
Synthesis", Proceedings of the International
Computer Music Conference, Aarhus, Denmark,
1994.

[16] Garnett, G. "Music, Signals and Representations:
a Survey", in G. De Poli, A. Piccialli, C. Roads
(Eds.) Representations of Musical Signals, MIT
Press, 1991.

[17] Haddad, K. "OpenMusic OM2CSound –
Bibliothèque de modules de generation de scores
pour Csound", Ircam software documentation,
M. Battier (Ed.), 1999.

[18] Honing, H. "Issues in the Representation of Time
and Structure in Music", Contemporary Music
Review, 9, 1993.

[19] Mathews, M and Kohut, J. "Electronic
simulation of violin resonances'' Journal of the
Acoustical Society of America, vol. 53, no. 6,
1973.

[20] Puckette, M. "Pure Data: another integrated
computer music environment", Proceedings of
the Second Intercollege Computer Music
Concerts, Tachikawa, Japan, 1996

[21] Puckette, M. "Using Pd as a Score Language",
Proceedings of the International Computer
Music Conference, Göteborg, Sweden, 2002.

[22] Risset, J.-C. and Mathews, M. "Analysis of
instrument tones", Physics Today 22 n° 2, 1969.

[23] Risset, J.-C. "Composing sounds, bridging gaps
– the musical role of the computer in my music",
in Musik und Technik, Helga de la Motte-Haber
& Rudolf Frisius, ed., Schott, Mainz, 1996.

[24] Rodet, X. and Cointe, P. "Formes: Compostion
and Scheduling of Processes", Computer Music
Journal, vol. 8, no 3, Fall 1984.

[25] Rodet, X., Potard, Y. and Barrière J.-B. "The
CHANT project: From the synthesis of the
singing voice to synthesis in general", Computer
Music Journal, vol. 8, no 3, Fall 1984.

[26] Stockhausen, K. "...wie die Zeit vergeht...", Die
Reihe, n°3, 1957.

[27] Stroppa, M. Traiettoria (1982-84), a cycle of
three pieces (Traiettoria… deviata, Dialoghi,
Contrasti) for piano and computer-generated
sounds. Recorded by Wergo: WER 2030-2,
1992.

[28] Stroppa, M. "Live electronics or… live music?
Towards a critique of interaction", in The
aesthetics of Live electronics, M. Battier, Ed.,
1994

[29] Stroppa, M. "Paradigms for the high level
musical control of digital signal processing",
Proceedings of the COST-G6 Conference on the
Digital Audio Effects (DAFX-00), Verona, Italy,
2000.

[30] Wright, M., Chaudhary, A., Freed, A., Wessel,
D., Rodet, X., Virolle, D., Woehrmann, R. and
Serra, X. "New applications of the Sound
Description Interchange Format", Proceedings of
the International Computer Music Conference,
Ann Arbor, USA, 1998.

[31] Xenakis, I. Formalized Music: Thought and
Mathematiccs in Composition, Indiana
University Press, 1992.

