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ABSTRACT 

This article addresses the problem of the representation 
of time in computer-assisted sound composition. We try 
to point out the specific temporal characteristics of 
sound synthesis processes, in order to propose solutions 
for a compositional approach using symbolic models and 
representations. 
 
 

1. INTRODUCTION 

The use of computers for music composition allows the 
formalisation and experimentations on compositional 
processes using symbolic computing models. Programs 
thus become a part of the music representation. Visual 
programming interfaces such as OpenMusic [1] were 
developed in order to make the creation of these 
programs easier, and more accessible for musician users.  

Concurrently, digital sound synthesis is another 
important revolution introduced in music by the use of 
computers; but the lack of abstraction and symbolical 
representations in sound synthesis applications remains 
an obstacle for the creation of rich compositional 
models. 

In this article, we will concentrate on the temporal 
aspect of sound synthesis programming and address this 
problem from the Computer-Assisted Composition 
(CAC) standpoint. Indeed, we think that Computer-
Assisted Composition might propose some solutions in 
order to conciliate sound synthesis and music writing.  

We present works carried out in OpenMusic, 
especially with the maquette interface, which model has 
been reformulated. This model integrates visual 
programming and temporal control in a coherent and 
generic way, which, we hope, allows to develop sound 
synthesis processes in a compositional context. 

Section 2 will outline some reflections about time in 
relation to sound synthesis, and section 3 will cite some 
related works. In sections 4 and 5, we present the visual 
programming framework developed in OpenMusic with 
the maquette features and concepts. Finally, section 6 
will give some examples of this system in sound 
synthesis applications. 

2. TIME AND SOUND SYNTHESIS 

2.1. Temporal Scales 

The control of sound synthesis for music composition 
involves the temporal parameter at different levels. The 
first is the organization of sound objects in a temporal 
axis. This aspect of the temporal control is not specific 
to sound synthesis and can be brought together with the 
temporal formalisms used for music composition in 
general (see [6], [18], [14]). These different formalisms 
of time representation include absolute models, 
relative/hierarchical models, functional models, logical 
models, constraints-based models, etc. 

On the other hand, since the earlier works on sound 
synthesis, time has been identified as an important 
parameter of timbre. In 1957, while developing a 
modern musical thought which now integrates timbre as 
a full-fledged and promising compositional field, K. 
Stockhausen yet defined timbre as "the result of a 
temporal structure" [26]. Later, notably with the works 
of M. Mathews and J.-C. Risset on synthetic timbres 
[22] [19], temporal phenomena such as attack transients, 
or relations between spectral parameters' temporal 
evolutions were pointed out as fundamental descriptors 
in the perception of the musical sound timbres. Since 
then, time was intensively used inside sound synthesis 
programs, and the control of the independent or related 
evolutions of synthesis parameters became a 
compositional challenge [23]. 

This structuring aspect of time in sounds carried our 
attention on some specific temporal properties. Synthesis 
processes deal with time at the microscopic level of the 
sound samples. Indeed, a synthesis program generates 
the values of a digital waveform that represents a 
continuous acoustic vibration. The sampling rate of this 
acoustic phenomenon must be as high as possible in 
order to reach high audio quality, i.e. to simulate the 
continuity of the acoustic waveforms. Supposing that 
continuity can be assumed from the point where 
perception does not distinguish discrete elements 
anymore, the temporal problem for the control of sound 
synthesis can thus be expressed in terms of continuity vs. 
discrete paradigms (see also [13]). If we want to keep 
cautious with these epistemological concepts, we can 
correlate the discrete paradigm with the domain where 
the objects (events) manipulated for creating compound 



  
 

 

structures keep having an appreciable significance, while 
in the domain of continuity, the objects of composition 
will not be delimited and independently discernable 
anymore. 

2.2.  Synthesizers  

The different time paradigms can be identified in 
software synthesizers. "Event-based" synthesizers (e.g. 
Csound [8]) are "naturally" polyphonic, and respond to 
punctual events and commands. They provide a logical 
organization and communication between several 
synthesis modules.  

On the other hand, "continuous" synthesizers (e.g. 
CHANT [25]) are based on "phrases" and produce a 
sound result by computing the system state at each 
moment. In this case, elaborated transitions (e.g. 
interpolations) and continuous manipulations are easier 
to control.  

Evidently this distinction is actually not so 
restrictive: continuous phenomena can be controlled in 
the first case, and the second one can also be 
manipulated in an "event-based" fashion. We will only 
retain that some software architectures can be more or 
less adapted and oriented towards one or another 
particular temporal paradigm [16]. 

2.3.  The Compositional Problem 

The nested temporal scales involved in an electronic 
composition will generally concern simultaneously both 
temporal domains described above. Structural relations 
still exist between them, but their inherent characteristics 
do not necessarily imply the same internal rules. 

Events represent the primitive of a discrete 
conception of sounds. They are elements that can be 
manipulated at a symbolical level. Nonetheless, 
continuous phenomena allow to generate complex sonic 
morphologies, and thus also need to be considered in the 
control structures. These phenomena can be internal to 
discrete events (e.g. the expression of an internal 
movement or transformation), or external (e.g. 
transitions from an event to another). 

The notion of event thus becomes blurred. J. F. Allen 
in [3] defines an event as "the way by which agents 
classify certain patterns of change". Depending on the 
desired compositional abstraction, an event can be the 
beginning of a sound in a large-scale musical structure; 
it can be a note (an acoustic element with a perceptible 
pitch and duration), a variation of energy in a spectral 
region, the beginning of a continuous transition.  

Therefore, the compositional control of sound 
synthesis cannot be restricted in the positioning in time 
of synthesis events. From the same compositional point 
of view, however, it must stay at a symbolic level. The 
problem is thus to establish relations between the linear 
continuity of time with a symbolic representation that 
allows its structuration and modelling. In other words, 
we would need symbolic data able to represent and 
control continuous temporal objects. 

3. RELATED WORKS 

Various CAC systems are oriented towards sound 
synthesis. We propose here a brief overview of a (non-
exhaustive) selection of some of them, which present 
original conceptions of time. More environments exist, 
that propose different interesting solutions (e.g. [12], 
[15]). The relevant temporal aspects of the following 
examples are outlined in order to provide comparison 
criteria for positioning our works in OpenMusic. 

Formes [24] was part of the earliest generations of 
CAC environments developed at Ircam. Originally 
designed to be a control interface for the CHANT 
synthesizer, this textual object-oriented language based 
on Lisp was one of the first systems integrating 
composition and sound synthesis. Formes proposed a 
hierarchical processes scheduling system, managed by a 
general "monitor", and which provided a high-level and 
continuous control of sound synthesis in time, allowing 
to program complex temporal situations. 

Boxes [7] is a visual environment which proposes a 
hierarchical temporal organization of musical objects. 
These object (graphical boxes) contain spectral 
representations of sounds and are connected to an 
additive synthesizer. In this framework, temporal 
constraints can be set between the boxes, which provides 
a logical time organisation model. However, this 
temporal control does not get in the internal synthesis 
processes but rather organize the synthesized objects in 
time. 

In the real-time system PureData [20], the data 
structure allows to schedule real time processes in a 
temporal axis, thanks to a graphical interface and 
process delaying operations [20]. The control is linear 
and under restraint of the real-time constraints [28], 
however the visual representation of time in such a 
system allows to envisage large scale (possibly 
hierarchical) organisations of real-time synthesis 
processes, and to step up to a real-time based score. 

Iannix [11] is another real-time system, in which 
time is approached in an original way. The visual 
interface is a bi-dimensional temporal space on which 
the user creates temporal trajectories, which can be lines, 
curves, circles. Cursors then follow these trajectories 
with variable speeds and directions, and activate 
synthesis events when they meet some trigger objects. 
This environment thus allows to organize parallel 
temporalities in a same space. The OpenGL 3D interface 
allows to zoom in and out in this space and to simulate a 
continuous hierarchy for variable-scales composition 
processes.  

 

4. TEMPORAL ASPECTS IN OPENMUSIC  

4.1. About Visual Programs 

OpenMusic is a Computer-Assisted Composition 
environment, which merges visual programs and musical 
notation [4]. In OpenMusic, a patch is a representation 



  
 

 

of a program. The user writes this program using 
graphical boxes and connections, and creating a 
functional expression. Boxes represent functional calls, 
and connections represent the functional composition of 
the program. Figure 1 shows an example of patches in 
OpenMusic. Some special boxes are used in patches to 
represent musical data structures such as chords 
sequences or sounds. 

The patch maintains a correspondence with a Lisp 
function: once a patch has been defined, it can thus be 
used as a function in another patch. This functional call 
is then also represented by a box, which evaluation 
consists in applying the function to the values connected 
to its inputs. Figure 1 illustrates this with a sound 
synthesis patch and its application in another patch. In 
this example, the patch requires a sequence of chords 
and an amplitude envelope as arguments, and returns a 
synthesized sound (see [10] for sound synthesis 
possibilities in OpenMusic). 

 

 
Figure 1. A sound synthesis patch (synthesis-patch) 
and its application in another patch (patch2). 

 
Multiple occurrences of a patch, represented by boxes in 
other patches, are thus all references to the same original 
patch, which function definition remains unaffected. 
This property presents advantages in terms of function 
prototyping, and use of abstractions (similarly to the 
definition of functions in a traditional programming 
language which allows modifying a function once and 
affecting all the places where it is used). Abstraction is 
thus used to reach a high level of control in musical 
processes. 

In contrast with real time systems, the time 
representation in an OpenMusic patch is that of the 
calculus: objects are computed following the structure of 
the functional graph. Musical time is thus represented 
and controlled as a numerical parameter in the program. 
Following the distinction made by I. Xenakis in [31], 
these objects resemble "out-of-time" structures, i.e. 
structures that have their own internal composition rules. 
They will be unfolded "in-time" in a later phase, when 
integrated in a temporal context (e.g. when they are 
played). 

4.2.  Temporal Context: Maquettes 

A maquette is a programming interface with 2 
dimensions: the horizontal axis represents time, and the 
vertical axis is a freely interpreted parameter (called y). 
This bi-dimensional space imposes a temporal context to 
the objects inside: it represents a way for unfolding 
musical objects in time.  

Foremost, the maquette is a program that allows to 
define the temporal organization of other programs. 
These programs are represented in the maquette by 
rectangles called temporal-boxes, whose horizontal 
position is correlated with an offset, and the extent with 
a duration (see Figure 2). These temporal-boxes can be 
connected together, recreating in this way the functional 
connections between the corresponding programs. A 
temporal-box can thus refer to a patch, or to another 
maquette (the latter allows to constitute hierarchical 
temporal structures). It can also refer to a simple object, 
which is equivalent to the particular case of a patch 
representing a constant function.  
 

 
Figure 2. A maquette window with temporal boxes and 
functional relations. 

In Figure 2, the bottom-left temporal-box refers to a 
patch similar to the one of Figure 1, which generates a 
sound. Actually, double-clicking this temporal-box 
opens the patch editor of Figure 4. The specific 
properties of such a patch will be discussed in section 
4.3. 

In addition, the maquette can be contained in a patch, 
and constructed algorithmically. In this case, the musical 
objects and their temporal offsets are given as input 
parameters of the maquette box (see Figure 3).  

 

 
Figure 3. A maquette constructed in a patch. 



  
 

 

Interested readers can find more descriptions about the 
maquette implementation in [1], [5]. In [10], we were 
considering using this interface as a support for 
developing sound synthesis models. We propose here a 
renewed version of the maquette, improved for hosting 
such processes integrating time and sound synthesis (see 
section 5 and 6).  

4.3. Evaluation vs. Performance 

The maquette integrates "out-of-time" patches in a 
temporal context in order to build a musical 
development with them. However this is not the matter 
of scheduling processes, but rather to incorporate the 
time parameter in the process. In the maquette model, 
evaluation and performance are two separated concepts.  

During the computation of the maquette, we call 
evaluation the phase where functional calls are evoked, 
and the values of the temporal-boxes (the musical results 
of each individual patch or maquette) are calculated. 
This phase is the preliminary of another one, related to 
the performance, where these results are collected in 
order to build a global musical object.  

This separation allows create temporal situations 
without being dependant on the linear time flow (in 
Figure 2, the sound box depends on data coming from an 
object that occurs later in the performance time.) It also 
reflects the distinction between composition and 
performance times. 

In the evaluation phase, the "terminal" temporal-
boxes in the functional graph of the maquette are 
evaluated, which evaluates recursively all the temporal-
boxes following the functional order defined by this 
graph. 

In the performance phase, the maquette computes its 
own musical result by collecting and mixing all the 
objects resulting from the temporal-boxes, now 
following the linear temporal order defined by the 
positions of the temporal-boxes.  

A container object is created, called maquette-object. 
It will eventually be sent to MIDI or audio renderers if 
the maquette is played, or represent the maquette itself in 
the performance phase when it is included in another 
maquette.  

4.4. Programs in Time 

Once it is introduced in a maquette, a patch is thus 
associated to a temporal-box and has two new 
characteristics due to its relation to the temporal context 
(see Figure 4): 

- It can access the coordinates and properties 
(position, offset, size, colour, etc.) of the temporal-box 
that invokes the process thanks to a "temporal input". In 
Figure 4, the vertical position (y) of the temporal-box in 
the maquette is used as a multiplying factor for the 
amplitude envelope. 

- It must provide a special "temporal output", which 
ports the external representation of the program: the 
object which is collected in the performance phase 

defined above. In our example (Figure 4), the TempOut 
box ports a synthesized sound (represented on the 
bottom-left box in the maquette of Figure 2). 

This object computation can thus depend on the self 
properties of the temporal-box, and on other external 
data: the temporal program still can have other inputs 
and outputs allowing it to receive and transfer data to the 
other objects.  

These relations of the musical objects with their 
external context might illustrate a sentence from P. 
Boulez, formulated in [9] while talking about the two 
compositional stages that are composing "within objects, 
in order to build them, or from the outside, in order to 
organize them", and which specified that "external 
criteria can act on internal criteria and modify the 
objects in order to link them in a coherent development 
and place them in a formal context". 

 

 
Figure 4. A "temporal patch". This patch corresponds 
to the bottom-left box of the maquette of Figure 2 and 
uses the patch of Figure 1. 

 
These temporal characteristics of the patches are 
optional: a patch that has no temporal output will 
nonetheless be able to act as a programming element in 
the evaluation phase of the maquette, without 
participating to the performance phase.  

Including patches in the maquettes enables the use of 
abstractions and the program reusability. The temporal-
boxes can thus constitute "template" objects, that can be 
duplicated and compute different results depending on 
their positions and self properties, but still controlled by 
a unique template program. 

 

5. SYNTHESIS MAQUETTE 

In order to obtain an improved temporal control, and to 
tackle the issues discussed in section 2, we complete the 
model of the maquette with two specific characteristics, 
(corresponding to the two phases – evaluation and 
performance – presented in section 4.3.) 



  
 

 

5.1. The Maquette as a Program 

Even though we pretend that the maquette is the 
representation of a program, its temporal specificity 
implies a particular behaviour. Indeed, the maquette 
program is based on the temporal properties of the 
temporal-boxes. However, these properties are 
susceptible to change: they can be modified by the 
execution of the program itself (see section 4.4.) For 
example, a temporal box can have its position (offset) 
changed depending on a variable parameter. Following 
the functional analogy, the evaluation of the maquette 
could therefore constitute a redefinition of the 
underlying program, which can be problematic when 
using functional abstractions. The correspondence 
between the maquette and an abstract Lisp function thus 
cannot be maintained. 

Nonetheless, we introduced the possibility to assign 
inputs and outputs to the maquettes, so that they can 
nevertheless be regarded as programs and be abstracted 
at a functional level. 

The external evaluation of a maquette then consists 
in computing its inputs, the maquette-object, and 
evaluating the different outputs. Externally, the maquette 
is then like any other patch whose special temporal 
output would create the maquette-object. 

The temporal hierarchy created by embedding 
maquettes one in another can then be generalized at this 
functional level.  

In Figure 5, the maquette has 3 inputs and 1 output:  
the input values are passed to the internal temporal-
boxes (one of them refers to another maquette), and the 
output of one of these temporal-boxes is returned by the 
output of the maquette.  

 

 
Figure 5. Temporal / functional hierarchies in a 
maquette.  

 
In a patch, a maquette can then also be regarded as the 
functional call of the program defined by this maquette 
(see Figure 6), in contrast with the previous constructive 
representation (Figure 3). In Figure 6, the inputs of the 
maquette box correspond to the inputs in the maquette 
editor of Figure 5. The 2 outputs of the box represent the 
maquette-object  and the output of the maquette editor. 

 

 
Figure 6. The maquette of Figure 5 in a patch. 

 
However, this functional representation of the maquette 
still presents a slight limitation. The computation result 
depends on, and can modify the properties of the internal 
objects. For that reason, recursion is not allowed; some 
consistency checking must therefore ensure that the 
functional abstraction of a maquette is not called inside 
the self maquette or one of its parents. 

5.2. Maquette-Object Computation 

Until now, the creation of the maquette-object in what 
we called the performance phase of the maquette 
computation was made by mixing the temporal outputs 
of the patches referred by the temporal-boxes. Such a 
maquette does not have a real computational control 
over its own result, as the patches do thanks to their 
"temporal output" (see section 4.4.) 

The new model we propose considers the maquette-
object computation as an accessible part of the program, 
that consists in processing the temporal-boxes and 
building a musical result depending on their values, 
positions, properties and relationships. 

In sound synthesis applications, the patches and 
objects in the maquette do not necessarily compute 
musical objects (sounds) anymore, but can also generate 
control parameters. The evaluation of the maquette 
would then consist in a synthesis program, that 
manipulates all these individual objects, and use them 
for controlling a high-level sound synthesis process.  

In this way, the composer has a hand on the process 
that creates the musical result of the maquette (the 
former maquette-object) using the temporal-boxes 
contained in it. The problem of the transition from 
discrete control elements (represented by the temporal-
boxes) to continuous phenomena can be handled in this 
framework. 

The synthesis-function is a new attribute of the 
maquette. Such function can be a patch or a lisp 
function, providing this patch or function has one input 
or argument (representing the list of temporal-boxes) 
and one output (the computed resultant object). It is 
supposed to constitute a link between these temporal-
boxes and the musical result of the maquette. 

This synthesis-function can be assigned to a 
maquette algorithmically in a patch, or by dragging a 
patch or function box in a special zone of the maquette 
window (the bottom-left corner of the window). It is 



  
 

 

supposed to control the computation of the musical 
result of the maquette. When no synthesis function is 
assigned, however, the default maquette-object is 
computed.  

Figure 7 shows a schematic example of the use of a 
maquette and its synthesis-function. Next section will 
illustrate with more details some possible cases of use. 

 

 
Figure 7. A maquette and its synthesis function. An 
icon in the bottom-left corner represents the synthesis 
function. Double-clicking this icon opens the synthesis 
patch. 

The possibility to set a "classical" patch as synthesis-
function also allows the use of templates of synthesis 
processes that can be applied in different contexts. 
 

6. APPLICATIONS FOR SOUND SYNTHESIS 

6.1. Templates for Synthesis Events 

This first application is an example of control of a 
Csound program using a maquette. It was inspired by 
previous works by K. Haddad using the OM2CSound 
library [17]. 
 

 
Figure 8. A maquette used for Csound synthesis. In 
this maquette each temporal box (event) represents a 
part of the score. 

The maquette of Figure 8 is used as a graphical interface 
for designing the Csound score. Various template 
patches are used. Each one of them, identified by a 
particular colour, produces a different kind of data, 
related to a Csound score event. 

The data produced by the temporal-boxes thus does 
not correspond to "perceptible" objects: they need to be 

integrated all together in order to create a musical result 
(a sound). 

The synthesis-function of this maquette, represented 
in Figure 9, is a function that converts these values of the 
temporal-boxes into a Csound score, associates this 
score to a Csound orchestra, and then runs Csound for 
computing a sound. 

 

 
Figure 9. A Csound synthesis patch associated with the 
maquette of Figure 8. 

The visual and interactive control of the synthesis events 
is thus associated to a global control of the events 
processing. 

If this maquette is used in a higher-level structure, it 
will (once evaluated) be considered (externally) as the 
computed sound. Figure 10 shows an example of this 
maquette used in another maquette next to other sounds. 
It can also be used in a patch as a sound synthesis 
function and interface (see Figure 11). 

 

 
Figure 10. The maquette of Figure 8 in a higher-level 
maquette. The external representation is the sound. 

 

 
Figure 11. The same maquette (Figure 8) in a patch, as 
a synthesis function. 



  
 

 

6.2. Global Synthesis Performance 

In [10], we attempted a first adaptation of the piece 
Traiettoria… deviatta from M. Stroppa [27] into a 
maquette (see Figure 12.) 

 

 
Figure 12. Part of the reconstitution of Traiettoria... 
deviatta in a maquette (extracted from [10]). 

 
In this maquette, the hierarchical feature was used to 
reach a visual control over the temporal structure of the 
piece. Each terminal box was a synthesis patch using the 
OMChroma system [2], and producing a sound. At the 
time of evaluating the maquette, a multiplicity of 
synthesis programs were performed sequentially, and the 
resulting sound was mixed down. 

With the synthesis-function, the sound synthesis 
process is delegated to a higher level: instead of 
processing separated programs in the maquette, each 
temporal box returns a matrix of parameters.  These 
synthesis parameters are then collected by the synthesis-
function, which triggers the Chroma synthesis program 
[29].  

When using large numbers of such synthesis events, 
this processing method demonstrates much more 
efficiency.  

Figure 13 shows the new maquette, which uses the 
synthesis function. The objects represented and 
manipulated are the control parameters of the sound 
synthesis; they are closer to the symbolic data involved 
at a compositional level. The sound object is computed 
in the late synthesis level, instead of the former 
maquette-object, which collected the sounds coming 
from synthesis patches. 

 

 
Figure 13. Reconstitution of Traiettoria... deviatta in a 
maquette (2nd version).  

This procedure (which consists in computing the 
synthesis parameters in the evalution phase and running 
the sound synthesis in the latter performance-related 
phase) also allows to consider abstract relations between 
the boxes in time, not expressed as such in the maquette, 
but built at the time to compute the final sound. This will 
be illustrated in the following example.  
 

6.3. Creation of Continuous Events 

The control of sound synthesis in the maquette allows to 
systematize the processing of synthesis events in order to 
create continuous phenomena based on these events. 
This can be done especially at a global level, i.e. not 
inside (or between) each individual event.  Starting from 
essential control objects, complex sound descriptions 
can be computed using continuation or transition 
processes. 

This last example is an application of the maquette 
for controlling the CHANT synthesizer. This synthesizer 
is based on continuous phrases described by the states of 
synthesis modules at different moments.  

We will use a CHANT configuration that consists in 
a single FOF synthesis ("Fonction d'Onde Formatique" – 
or Formant Wave Function). For setting the synthesizer's 
parameters, the user must provide the state of a FOF 
bank (FOB) at different times. This is done by mean of 
an SDIF file [30] in which each frame contains the FOB 
state at time t. The main parameters to set are the 
frequency, bandwidth, and amplitude of each FOF. In 
order to simplify our example, we will consider the 
frequency parameter only. The maquette of figure 14 
contains 3 temporal boxes, each one of them containing 
a break-point function (BPF) that represents the 
frequencies of 8 FOF at corresponding times. 
 

 
Figure 14. A simple maquette containing 3 control 
BPF. 

 
In a first version, our synthesis-function will process 
these values in order to complete the FOF bank data and 
write its evolution in an SDIF file. The corresponding 
patch is illustrated in Figure 15. 
 



  
 

 

 
Figure 15. The CHANT synthesis patch for the 
maquette of Figure 14. 

Figure 16 shows the loop editor for the process-
tempboxes box of Figure 15.  
 

 
Figure 16. The "process-tempboxes" loop of Figure 
15. 

If we use this patch as the synthesis-function of our 
maquette, 3 FOB frames are created and used to process 
the CHANT synthesis. 

In a second version of the synthesis-function, we 
replace the process-tempboxes loop by another one 
(represented in Figure 17), that assigns a programmed 
continuation to the initial FOF elements. Each one of the 
FOB created will be completed with a period of 
perturbations (during the extension of the temporal box). 
Additional SDIF frames are generated, which makes the 
final FOB evolution more complex (with our 3 boxes 
and a control rate of 0.1s., some 100 frames are created 
dynamically.)  

 
Figure 17. A second version of the "process-
tempoxes" loop in the synthesis-function of Figure 15.  
Additional data are created after each event in order to 
generate variations. 

The Figure 18 shows a comparison of the frequency 
evolution in the SDIF files generated in the two versions 
of this example. 
 

 

 
Figure 18. Evolution of the FOF frequencies in the 
SDIF files generated in the two different examples. 

 
This process thus permitted to construct a complex 
evolution of the FOF in time (see Figure 18) without 
having to consider this complexity at the time of setting 
the initial temporal boxes.  

These boxes and their values are the external, visible 
part of the process, while the synthesis patch is the 
computing level of this process that integrates the 
external level and transforms it into a sound.  

Both parts have to be defined separately: the 
maquette constitutes a symbolic interface level chosen 
by the composer for the control of the entire process. 



  
 

 

7. CONCLUSION 

While musical editors are insufficient to represent the 
processing parameters and relations involved by sound 
synthesis, and programming interfaces cannot integrate a 
musical and intuitive representation of time, the use of 
the maquette might be a worthy trade-off for the control 
of synthesis processes integrating temporal and symbolic 
aspects. 

By mixing a programming environment and a visual 
control with an arrangement of the musical materials in 
time, it provides a variable-scaled vision of musical 
structures. Microscopic time (the time of the sound 
samples and continuous evolutions), can be handled with 
macroscopic time (the time of the musical forms), and 
sometimes be related to it: the internal composition rules 
of out-of-time objects interact with the high-level 
temporal organization.  

The maquette thus allows to unfold sound synthesis 
processes in time, but also to integrate time in the 
synthesis processes. We have seen in the different 
examples that the synthesis process in the maquette 
allowed the representation of continuous objects using 
the discrete representation of both events (in the 
maquette) and program (in the synthesis-function).  

We believe that this system could help composers to 
get the advantage of the means provided by the CAC 
environment in order to get to new applications of sound 
writing and creation. 
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